A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision
نویسندگان
چکیده
Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized LeverbergMarquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system. Keywords—Artificial Neural Network; Back propagation Gaming; Leverberg-Marquardt; Minimax procedure
منابع مشابه
Robustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملMinimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions
This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...
متن کاملUsing the Gamma Memory Neural Network for Bankruptcy Prediction: a Preliminary Study
Many static neural networks have been studied extensively in financial classification problems. However, dynamic time series predictive classification using neural networks with memory, such as the Gamma Memory neural network (GMNN), may prove more accurate. In this study we compare the predictive accuracy of the GMNN to the Multilayer Perceptron neural network and the statistical approaches of...
متن کاملRobust Policy Computation in Reward-Uncertain MDPs Using Nondominated Policies
The precise specification of reward functions for Markov decision processes (MDPs) is often extremely difficult, motivating research into both reward elicitation and the robust solution of MDPs with imprecisely specified reward (IRMDPs). We develop new techniques for the robust optimization of IRMDPs, using the minimax regret decision criterion, that exploit the set of nondominated policies, i....
متن کاملA minimax search algorithm for CDHMM based robust continuous speech recognition
In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markov model based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011